Transcriptional regulation of the stem cell leukemia gene (SCL)--comparative analysis of five vertebrate SCL loci.

نویسندگان

  • Berthold Göttgens
  • Linda M Barton
  • Michael A Chapman
  • Angus M Sinclair
  • Bjarne Knudsen
  • Darren Grafham
  • James G R Gilbert
  • Jane Rogers
  • David R Bentley
  • Anthony R Green
چکیده

The stem cell leukemia (SCL) gene encodes a bHLH transcription factor with a pivotal role in hematopoiesis and vasculogenesis and a pattern of expression that is highly conserved between mammals and zebrafish. Here we report the isolation and characterization of the zebrafish SCL locus together with the identification of three neighboring genes, IER5, MAP17, and MUPP1. This region spans 68 kb and comprises the longest zebrafish genomic sequence currently available for comparison with mammalian, chicken, and pufferfish sequences. Our data show conserved synteny between zebrafish and mammalian SCL and MAP17 loci, thus suggesting the likely genomic domain necessary for the conserved pattern of SCL expression. Long-range comparative sequence analysis/phylogenetic footprinting was used to identify noncoding conserved sequences representing candidate transcriptional regulatory elements. The SCL promoter/enhancer, exon 1, and the poly(A) region were highly conserved, but no homology to other known mouse SCL enhancers was detected in the zebrafish sequence. A combined homology/structure analysis of the poly(A) region predicted consistent structural features, suggesting a conserved functional role in mRNA regulation. Analysis of the SCL promoter/enhancer revealed five motifs, which were conserved from zebrafish to mammals, and each of which is essential for the appropriate pattern or level of SCL transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective rescue of early haematopoietic progenitors in Scl(-/-) mice by expressing Scl under the control of a stem cell enhancer.

The stem cell leukaemia gene (Scl) encodes a basic helix-loop-helix transcription factor with a pivotal role in both haematopoiesis and endothelial development. During mouse development, Scl is first expressed in extra-embryonic mesoderm, and is required for the generation of all haematopoietic lineages and normal yolk sac angiogenesis. Ectopic expression of Scl during zebrafish development spe...

متن کامل

Stem cell leukemia protein directs hematopoietic stem cell fate.

Stem cell leukemia (SCL) protein has been shown to be an essential transcription factor during hematopoietic development in the embryo. In adult hematopoiesis, however, the role for SCL has remained largely unknown, whereas it is expressed in bone marrow hematopoietic stem cells (HSCs). In this study, we performed HSC transplantation and an in vitro HSC differentiation assay using retrovirally ...

متن کامل

Deletion of the Scl +19 enhancer increases the blood stem cell compartment without affecting the formation of mature blood lineages

The stem cell leukemia (Scl)/Tal1 gene is essential for normal blood and endothelial development, and is expressed in hematopoietic stem cells (HSCs), progenitors, erythroid, megakaryocytic, and mast cells. The Scl +19 enhancer is active in HSCs and progenitor cells, megakaryocytes, and mast cells, but not mature erythroid cells. Here we demonstrate that in vivo deletion of the Scl +19 enhancer...

متن کامل

Regulation of the stem cell leukemia (SCL) gene: a tale of two fishes.

The stem cell leukemia (SCL) gene encodes a tissue-specific basic helix-loop-helix (bHLH) protein with a pivotal role in hemopoiesis and vasculogenesis. Several enhancers have been identified within the murine SCL locus that direct reporter gene expression to subdomains of the normal SCL expression pattern, and long-range sequence comparisons of the human and murine SCL loci have identified add...

متن کامل

HEMATOPOIESIS AND STEM CELLS Runx genes are direct targets of Scl/Tal1 in the yolk sac and fetal liver

Transcription factors such as Scl/Tal1, Lmo2, and Runx1 are essential for the development of hematopoietic stem cells (HSCs). However, the precise mechanisms by which these factors interact to form transcriptional networks, as well as the identity of the genes downstream of these regulatory cascades, remain largely unknown. To this end, we generated an Scl / yolk sac cell line to identify candi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome research

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 2002